
String Monitoring Unit (SMU)

0825 | 1225 | 1625 | 2422

Operating Manual

Version 20171221

Copyright

Copyright for this manual remains with the manufacturer. No part of this manual may be reproduced or edited, duplicated or distributed using electronic systems without written permission from meteocontrol GmbH.

Compensation shall be payable in the event of any copyright infringements.

All brand names mentioned in this manual are the property of their respective manufacturers and are hereby acknowledged.

Contact data

The manufacturer of the device described in this documentation is:

meteocontrol GmbH

Spicherer Str. 48

D-86157 Augsburg

Tel.: +49 (0) 821 3 46 66-0 Web: www.meteocontrol.de

Technical support:

Tel.: +49 (0) 821 3 46 66-88 Fax: +49 (0) 821 3 46 66-11

E-mail: technics@meteocontrol.com

Details regarding the manual

The original operating manual is written in German. All other language versions are translations of the original operating manual and are hereby identified as such.

© 2016 meteocontrol GmbH

All rights reserved.

All information in this operating manual has been compiled and checked with the greatest care and diligence. Nevertheless, the possibility of errors cannot be entirely excluded. meteocontrol GmbH therefore cannot accept any liability for errors or their consequences.

Subject to technical alterations.

Contents

Gener	al notes	3
1.1	Safety instructions	3
1.2	Warning symbols	3
1.3	Additional information	4
1.4	Text display	4
Notes	on this operating manual	5
2.1	Warranty and liability	5
Safety	instructions for operation	6
3.1	Intended use	6
3.2	Personnel	6
3.3	Particular risks	7
3.4	Protection concepts	7
3.5	Maintenance and cleaning	8
3.6	Transport and storage	8
Techn	ical description	9
4.1	String Monitoring Unit functionality	9
Device	e overview	10
5.1	Front side of the String Monitoring Unit 0825	10
5.2		
5.3		
5.4	Front side of the String Monitoring Unit 2422	
Install	ation	14
6.1	Safety instructions for installation	14
6.2	Installation	15
6.2.1	Cables and wiring	15
6.2.2	Integration of the String Monitoring Unit into a PV system	16
6.2.3	Connecting a PT100 temperature sensor	17
6.3	Communication settings	18
6.3.1	Supported functions	18
6.3.2	Modbus parameters	18
6.3.3	Byte sequence	18
6.3.4	Configuring the communication settings	19
6.3.5	Communication connection	
6.3.6		
6.4	Connection procedure	29
Techn	ical data	30
7.1	Technical data – String Monitoring Unit 0825	30
7.2	Technical data – String Monitoring Unit 1225	
7.3	Technical data – String Monitoring Unit 1625	34
7.4	Technical data – String Monitoring Unit 2422	36
	1.1 1.2 1.3 1.4 Notes 2.1 Safety 3.1 3.2 3.3 3.4 3.5 3.6 Techn 4.1 Device 5.1 5.2 5.3 5.4 Install 6.2 6.2.3 6.3.1 6.2.2 6.2.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.4 Techn 7.1 7.2 7.3	1.2 Warning symbols

8.	Envii	ronmental protection and disposal	38
9.	Арре	endix	39
	9.1	EC Declaration of Conformity	39
	92	List of figures	40

General notes

1.1 Safety instructions

Safety instructions warn of dangers when using the devices and explain how they can be avoided.

The safety instructions are classified according to the severity of the risk and are subdivided into four groups:

DANGER

Imminent danger

Failure to comply with the warning notice will lead to an imminent risk of death or serious physical injury!

WARNING

Possible danger

Failure to comply with the warning notice may lead to death or serious physical injury!

CAUTION

Hazard with a risk of material damage

Failure to comply with the warning notice may lead to minor injuries!

ATTENTION

Risk of material damage

Failure to comply with the warning notice will lead to material damage!

1.2 Warning symbols

Particular dangers are highlighted using warning symbols.

ELECTRICAL HAZARD

Risk of electrocution!

Failure to comply with the warning notice will lead to an imminent risk of serious injury or death.

1.3 Additional information

This symbol can be found next to notes, additional information and tips.

1.4 Text display

Emphasized points are shown in bold and indicate important information.

Lists are shown with bullet points (level 1) and dashes (level 2):

- List 1
 - Point A
 - Point B
- List 2

Instructions describe steps which are to be carried out in the given order.

- Instruction 1
- 2. Instruction 2
- Result of the operation

Button names are shown in capitals and in "QUOTATION MARKS".

In illustrations, item numbers are used to indicate components.

The legend including item numbers and descriptions of the components is shown below the figure. Alternatively, direct references to components are made in the text.

2. Notes on this operating manual

This manual is a key aid when it comes to ensuring proper operation of the device. It contains important information and safety notes to help you use the devices correctly, economically and in the intended manner.

The manual helps to avoid dangers, to reduce repair costs and downtimes, and to increase the reliability and operating life of the devices.

This manual describes the installation, configuration and operation of the String Monitoring Units 0825, 1225, 1625 and 2422.

During installation, all the manuals for system modules and components must be taken into account.

DANGER

Danger from improper handling of the device

The personnel responsible for installation, operation and maintenance of the system must have read and understood the operating manual before the devices can be installed and used safely!

The manual and documentation must be kept by the system and be available at all times as required.

This manual is continually updated. The most up-to-date version of the operating manual can be found on our Internet site. <u>www.meteocontrol.de</u>

2.1 Warranty and liability

Details of the scope and form of the warranty as well as the warranty period are given in the meteocontrol GmbH General Terms and Conditions.

meteocontrol GmbH rejects any liability for damage arising from the nonobservance of the operating manual.

This applies, in particular, to damage resulting from:

- Unintended use
- Incorrect operation
- Wrongly chosen materials and tools
- Faulty or non-executed maintenance and repairs

3. Safety instructions for operation

Before commencing the installation or commission and before maintenance, be sure to read and observe all the relevant warnings and safety information in this manual.

Installation, commissioning, operation and maintenance of the measuring boards must be carried out in the prescribed way, i.e. in accordance with the conditions described in this manual and the technical data for the relevant measuring board.

3.1 Intended use

The measuring boards of the String Monitoring Unit series are designed to monitor the direct current side of photovoltaic systems. Solar module strings (a number of solar modules connected together), hereinafter referred to as "strings", can be connected to the measuring boards. The measuring boards may be used only for such measurement tasks. Any other use is considered not as intended.

To ensure safe operation, the measuring boards may be operated only as specified in the instruction manual and technical data sheets. The relevant statutory and safety regulations that apply to the specific application must also be observed.

3.2 Personnel

These devices may be installed, commissioned and maintained only by a qualified electrician.

Given their specialist training, knowledge, experience and familiarity with the relevant standards and regulations, a qualified electrician is in a position not only to carry out work on electrical systems but also to recognize and avoid possible dangers unaided.

The qualified electrician must comply with the occupational health and safety laws in force.

Please note in particular:

- all national installation and set-up regulations (e.g. VDE in Germany),
- all generally accepted codes of practice,
- the information on transport, installation, operation, service, maintenance and disposal given in this manual.
- specific values, limits and information relating to operating and ambient conditions on type plates and in data sheets.

3.3 Particular risks

The measuring boards are used as components in solar installations and must therefore be integrated into their safety systems. They are not themselves safety components and cannot effect safety-related shutdowns. Additional components are needed for this purpose, and must be provided by the installer and operator of the system.

Once they are connected to solar modules, String Monitoring Units are permanently at a very high voltage, sufficient to cause death or serious injury if touched. You must therefore make sure that only qualified personnel have access to the measuring boards, and that the measuring boards are fitted with circuit breakers to de-energize them for maintenance purposes.

3.4 Protection concepts

- The modules should be provided with a cover to prevent direct contact in the string combiner box
- The measuring boards must be mounted in a sealed enclosure in such a way that they are accessible only to authorized personnel
- The String Monitoring Units must not be modified in any way
- Damaged devices must be taken out of operation immediately and checked by a qualified electrician
- Local regulations must be observed when using the devices
- The safety of the measuring boards and the user cannot be guaranteed if the safety precautions described are violated

3.5 Maintenance and cleaning

For installation and maintenance, the measuring boards must always be disconnected from the power supply. Before doing any work on the measuring board, check that the circuit breaker has been activated and the measuring board is de-energized.

In the event of a defect, failure or damage, do not attempt to repair any devices yourself or to resume operation. In such cases please always contact your customer service agent or meteocontrol.

3.6 Transport and storage

As soon as you receive the products, check that the packaging is intact and examine the measuring board for any obvious damage or defects. Check that the delivery is complete (accessories, documentation, tools etc.).

WARNING

A damaged device must not be put into operation!

In such cases please contact your customer service agent or meteocontrol.

ATTENTION

To avoid possible damage, always use the original packaging when transporting or shipping the device.

Protect the device from dust and moisture.

4. Technical description

4.1 String Monitoring Unit functionality

The String Monitoring Unit was specially developed for measuring electrical values (string currents, system voltage and power) of the PV generator within a PV system. Independently of the inverters, the DC side of a photovoltaic system (PV system) can be precisely monitored and errors and faults can be detected and corrected early on. For instance:

- contamination with pollen, dust or soot,
- weather influences such as hail or snow,
- installation errors.
- manufacturing errors,
- theft and vandalism.

The measuring boards have a Modbus interface for control purposes and for exporting data. It is possible to combine a number of measuring boards in a single system, for instance if more solar module strings need to be connected than there are inputs available on the String Monitoring Unit.

There are four possible variants which differ in terms of the number of channels available for measuring electrical values and the measuring range.

String Monitoring Unit 0825

This measuring board has 8 inputs for measuring string currents up to 25 A and the system voltage.

String Monitoring Unit 1225

This measuring board has 12 inputs for measuring string currents up to 25 A and the system voltage.

String Monitoring Unit 1625

This measuring board has 16 inputs for measuring string currents up to 25 A and the system voltage.

String Monitoring Unit 2422

This measuring board has 24 inputs for measuring string currents up to 22 A and the system voltage.

5. Device overview

5.1 Front side of the String Monitoring Unit 0825

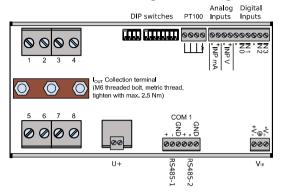


Fig. 1: Device overview – front side of the String Monitoring Unit 0825

1 8	Inputs for measuring string currents	INP mA	Analog input 0 20 mA for current signal
I _{OUT}	Output for total current on common terminal	INP V	Analog input 0 10 V for voltage signal
U+	Input for measuring system voltage across all strings	IN0 IN3	Digital inputs
DIP	DIP switches for setting the communication parameters	RS485	Bus interface, duplicated and connected through internally
PT100	Input for temperature sensor (PT100 in three-wire connection)	V_{in}	Power supply (22 27 V DC)

5.2 Front side of the String Monitoring Unit 1225

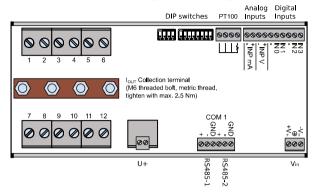


Fig. 2: Device overview – front side of the String Monitoring Unit 1225

1 12	Inputs for measuring string currents	INP mA	Analog input 0 20 mA for current signal
I _{OUT}	Output for total current on common terminal	INP V	Analog input 0 10 V for voltage signal
U+	Input for measuring system voltage across all strings	IN0 IN3	Digital inputs
DIP	DIP switches for setting the communication parameters	RS485	Bus interface, duplicated and connected through internally
PT100	Input for temperature sensor (PT100 in three-wire connection)	V_{in}	Power supply (22 27 V DC)

5.3 Front side of the String Monitoring Unit 1625

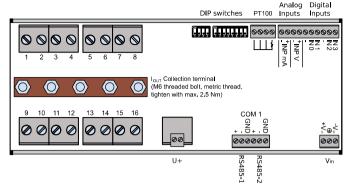


Fig. 3: Device overview – front side of the String Monitoring Unit 1625

1 16	Inputs for measuring string currents	INP mA	Analog input 0 20 mA for current signal
I _{OUT}	Output for total current on common terminal	INP V	Analog input 0 10 V for voltage signal
U+	Input for measuring system voltage across all strings	IN0 IN3	Digital inputs
DIP	DIP switches for setting the communication parameters	RS485	Bus interface, duplicated and connected through internally
PT100	Input for temperature sensor (PT100 in three-wire connection)	V _{in}	Power supply (22 27 V DC)

5.4 Front side of the String Monitoring Unit 2422

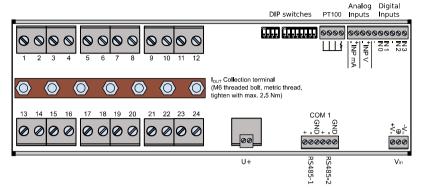


Fig. 4: Device overview - front side of the String Monitoring Unit 2422

1 24	Inputs for measuring string currents	INP mA	Analog input 0 20 mA for current signal
I _{OUT}	Output for total current on common terminal	INP V	Analog input 0 10 V for voltage signal
U+	Input for measuring system voltage across all strings	IN0 IN3	Digital inputs
DIP	DIP switches for setting the communication parameters	RS485	Bus interface, duplicated and connected through internally
PT100	Input for temperature sensor (PT100 in three-wire connection)	V _{in}	Power supply (22 27 V DC)

6. Installation

6.1 Safety instructions for installation

DANGER

Risk of electrocution!

Fatal injuries or death from contact with cables and terminals. Cables carry voltages of up to 1,500 V.

- Only connect or disconnect cables while the power supply is switched off.
- Take measures to prevent the power supply being switched on again.

ATTENTION

Damage due to incorrectly connected cables!

Incorrectly connected cables can lead to damage or destruction of the measuring inputs and the device.

- Connect cables only to the sockets provided for this purpose.
- Observe the polarity while connecting cables.

ATTENTION

Damage due to overvoltage!

Overvoltages or surge voltages may damage or destroy the device.

Protect the power supply against overvoltages.

6.2 Installation

6.2.1 Cables and wiring Cable types

Bus cabling

Data cables, RS485, RS422,

twisted and shielded: Li2YCYv (TP) 2×2×0.5 mm^{2) 1)}

Network cables: CAT 6

• Sensors (temperature sensors)

Sensor cables: LiYCY 2×2×0.5 mm²

Maximum permissible cable lengths:

Bus cabling (data cable RS485)
 Sensors
 1200 m^{2) 3)}
 100 m

Shielding

meteocontrol recommends grounding the cable shield at only one point, otherwise connecting it only between the individual measuring boards.

¹⁾ We recommend using the cable type UNITRONIC® Li2YCYv (TP) manufactured by Lapp Kabel, or an equivalent cable type. This cable is suitable for laying in soil.

²⁾ For longer cable lengths, repeaters must be used.

³⁾ Several separate cables of this length require a hub.

6.2.2 Integration of the String Monitoring Unit into a PV system

Fig. 5 shows typical circuitry for connecting the String Monitoring Units 0825, 1225, 1625 or 2422 within a PV system.

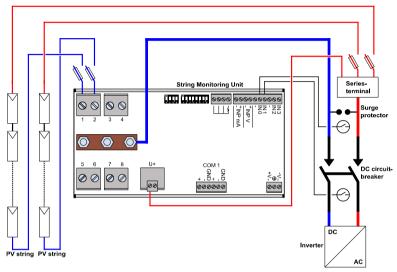


Fig. 5: Typical circuitry for a String Monitoring Unit

The interconnections between individual photovoltaic modules (PV strings) go to the inputs. This makes it possible to measure the currents of the individual strings. The total current is fed out via the copper rail. The system voltage of the PV generator (strings of the PV system) is measured via the input U+ (positive voltage).

Please note that the connection process calls for a number of additional components such as fuses, surge arresters, DC circuit breakers or auxiliary contacts, which are not included in delivery of the String Monitoring Units.

6.2.3 Connecting a PT100 temperature sensor

PT100 temperature sensors are connected to the String Monitoring Units with a three-wire connection. Fig. 6 shows how a sensor is connected.

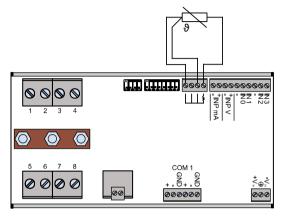


Fig. 6: Connecting a PT100 temperature sensor

6.3 Communication settings

6.3.1 Supported functions

03 Read holding registers

Exports the binary content of the slave's holding registers

04 Read input registers

Exports the binary content of the slave's input registers

06 Preset single register

Writes a value to the slave's register

16 (10Hex) preset multiple registers

Writes a value to a number of the slave's registers

	Address basis	Read function code	Write function code
Input register	30001	0x04	
Holding register	40001	0x03	0x06, 0x10

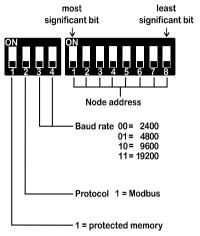
6.3.2 Modbus parameters

Baud rate: 2,400, 4,800, 9,600 (factory setting), 19,200 bps

Data format: 8N1 (factory setting), 8E1, 8O1

Can be set via Modbus

Timeout: 1 ms


6.3.3 Byte sequence

The data in the 16-bit Modbus registers is provided in big-endian format (high byte before low byte).

6.3.4 Configuring the communication settings

The two DIP switches on the String Monitoring Units are used to configure the protocol and the bus settings.

DIP switch 1

PIN	Meaning
1	Write protection 0 = Values may be written 1 = Values may not be written
2	Protocol setting 1 = Modbus RTU
3, 4	Baud rate setting 00 = 2,400 bps 01 = 4,800 bps 10 = 9,600 bps 11 = 19,200 bps

DIP switch 2

The device's bus address is specified using the second DIP switch.

The following table shows the addresses of the individual switches if they are enabled. If a number of switches are set to ON, the numbers add up to form the bus address.

PIN	Meaning
1	$2^7 = 128$
2	$2^6 = 64$
3	$2^5 = 32$
4	$2^4 = 16$
5	$2^3 = 8$
6	$2^2 = 4$
7	$2^1 = 2$
8	$2^0 = 1$

This way, a bus address between 1 and 255 can be allocated. The address 0 is not a valid bus address for Modbus slaves.

Examples

Protocol = Modbus Parity = none Baud rate = 19,200 Address = 2

Protocol = Modbus
Parity = none
Baud rate = 9,600
Address = 55

6.3.5 Communication connection

If you want to connect more than one device to the bus, you must daisy-chain the connection.

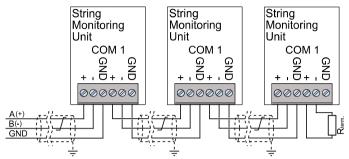


Fig. 7: Daisy-chain cabling

Different devices can only be queried together if they use the same communication protocol and the same serial communication parameters (baud rate, data bits, parity, stop bits).

The first and the last device on the bus must be terminated with a 120 Ω resistor $R_{\mbox{\tiny term}}$.

By this way, up to 128 devices can be queried via a single bus

6.3.6 Modbus register list

Please note that not all registers contain valid values depending on the String Monitoring Unit chosen and the current measuring channels available in each case.

String Monitoring Unit 0825: 8 current measuring channels
String Monitoring Unit 1225: 12 current measuring channels
String Monitoring Unit 1625: 16 current measuring channels
String Monitoring Unit 2422: 24 current measuring channels

All registers have a sample rate of 100 ms.

The registers of current measurement values contain the moving average of the last 16 measured values.

Readable registers

Register	Format	Description	Unit	Access
30001	int16	Digital inputs See detailed information on "Digital input status"	_	Read
30002	int16	Channel 1 current	mA	Read
30003	int16	Channel 2 current	mA	Read
30004	int16	Channel 3 current	mA	Read
30005	int16	Channel 4 current	mA	Read
30006	int16	Channel 5 current	mA	Read
30007	int16	Channel 6 current	mA	Read
30008	int16	Channel 7 current	mA	Read
30009	int16	Channel 8 current	mA	Read
30010	int16	Channel 9 current	mA	Read
30011	int16	Channel 10 current	mA	Read
30012	int16	Channel 11 current	mA	Read
30013	int16	Channel 12 current	mA	Read
30014	int16	Channel 13 current	mA	Read
30015	int16	Channel 14 current	mA	Read
30016	int16	Channel 15 current	mA	Read

\mathbf{mc} meteo control

Register	Format	Description	Unit	Access
30017	int16	Channel 16 current	mA	Read
30018	int16	Channel 17 current	mA	Read
30019	int16	Channel 18 current	mA	Read
30020	int16	Channel 19 current	mA	Read
30021	int16	Channel 20 current	mA	Read
30022	int16	Channel 21 current	mA	Read
30023	int16	Channel 22 current	mA	Read
30024	int16	Channel 23 current	mA	Read
30025	int16	Channel 24 current	mA	Read
30034	int16	Current measurement status (Channel 1 Channel 16) See detailed information on "Current measurement status"		Read
30035	int16	Current measurement status (Channel 17 Channel 24) See detailed information on "Current measurement status"		Read
30040	int16	System voltage Range 0 V 1,500 V	V	Read
30042	int16	Analog input (0 10 V) Range 0 1000	_	Read
30043	int16	Analog input (0 20 mA) Range 0 1000		Read
30044	int16	PT100 temperature Range -22 °C 83 °C	°C	Read
30045	int16	Measuring board temperature Range -20 °C 120 °C	°C	Read
20047	in+10	Total aurrent	٨	Dood
30047	int16	Total current	A	Read
30048	int32	System power Transmission order: Little-endian (low word before high word)	W	Read

Register	Format	Description	Unit	Access
30052	int16	Channel 1 current average value ¹⁾	mA	Read
30053	int16	Channel 2 current average value ¹⁾	mA	Read
30054	int16	Channel 3 current average value ¹⁾	mA	Read
30055	int16	Channel 4 current average value ¹⁾	mA	Read
30056	int16	Channel 5 current average value ¹⁾	mA	Read
30057	int16	Channel 6 current average value ¹⁾	mA	Read
30058	int16	Channel 7 current average value ¹⁾	mA	Read
30059	int16	Channel 8 current average value ¹⁾	mA	Read
30060	int16	Channel 9 current average value ¹⁾	mA	Read
30061	int16	Channel 10 current average value ¹⁾	mA	Read
30062	int16	Channel 11 current average value ¹⁾	mA	Read
30063	int16	Channel 12 current average value ¹⁾	mA	Read
30064	int16	Channel 13 current average value ¹⁾	mA	Read
30065	int16	Channel 14 current average value ¹⁾	mA	Read
30066	int16	Channel 15 current average value ¹⁾	mA	Read
30067	int16	Channel 16 current average value ¹⁾	mA	Read
30068	int16	Channel 17 current average value ¹⁾	mA	Read
30069	int16	Channel 18 current average value ¹⁾	mA	Read
30070	int16	Channel 19 current average value ¹⁾	mA	Read
30071	int16	Channel 20 current average value ¹⁾	mA	Read
30072	int16	Channel 21 current average value ¹⁾	mA	Read
30073	int16	Channel 22 current average value ¹⁾	mA	Read
30074	int16	Channel 23 current average value ¹⁾	mA	Read
30075	int16	Channel 24 current average value ¹⁾	mA	Read

¹⁾ Average value over 6 seconds

Detailed information on digital input status

Bit	Digital input	Remarks
0	IN 0	
1	IN 1	0 = Not active
2	IN 2	1 = Active
3	IN 3	

Detailed information on current measurement status

Detailed information on current measurement status					
	Bit	Channel current measurement	Remarks		
	0	Channel 1			
	1	Channel 2			
	2	Channel 3			
	3	Channel 4			
	4	Channel 5			
34	5	Channel 6			
	6	Channel 7	0 = Measured value below		
r 300	7	Channel 8	200 mA		
Register 30034	8	Channel 9	1 = Measured value above 200 mA		
Re	9	Channel 10	200 IIIA		
	10	Channel 11			
	11	Channel 12			
	12	Channel 13			
	13	Channel 14			
	14	Channel 15			
	15	Channel 16			

meteo|control|

	Bit	Channel current measurement	Remarks
35	0	Channel 17	
	1	Channel 18	
	2	Channel 19	O. Marra and all a halfs
r 300	3	Channel 20	0 = Measured value below 200 mA
Register 30035	4	Channel 21	1 = Measured value above 200 mA
Re	5	Channel 22	200 IIIA
	6	Channel 23	
	7	Channel 24	

Writable registers

Register	Format	Description	Unit	Access
40001	int16	Parity setting 1 = None 2 = Even 3 = Odd		Write
40002	int16	Channel 1 current offset ²⁾		Write
40003	int16	Channel 2 current offset ²⁾		Write
40004	int16	Channel 3 current offset ²⁾		Write
40005	int16	Channel 4 current offset ²⁾		Write
40006	int16	Channel 5 current offset ²⁾		Write
40007	int16	Channel 6 current offset ²⁾		Write
40008	int16	Channel 7 current offset ²⁾		Write
40009	int16	Channel 8 current offset ²⁾		Write
40010	int16	Channel 9 current offset ²⁾		Write
40011	int16	Channel 10 current offset ²⁾		Write
40012	int16	Channel 11 current offset ²⁾		Write
40013	int16	Channel 12 current offset ²⁾		Write
40014	int16	Channel 13 current offset ²⁾		Write
40015	int16	Channel 14 current offset ²⁾	-	Write

Register	Format	Description	Unit	Access
40016	int16	Channel 15 current offset ²⁾		Write
40017	int16	Channel 16 current offset ²⁾		Write
40018	int16	Channel 17 current offset ²⁾		Write
40019	int16	Channel 18 current offset ²⁾		Write
40020	int16	Channel 19 current offset ²⁾		Write
40021	int16	Channel 20 current offset ²⁾		Write
40022	int16	Channel 21 current offset ²⁾		Write
40023	int16	Channel 22 current offset ²⁾		Write
40024	int16	Channel 23 current offset ²⁾		Write
40025	int16	Channel 24 current offset ²⁾		Write

²⁾ Settable offset for the current measured value, default = 0

40040	int16	Voltage offset ³⁾		Write
40041	int16	Not used		Write
40042	int16	Analog input offset (0 10 V) ³⁾		Write
40043	int16	Analog input offset (0 20 mA) ³⁾	-	Write
40044	int16	PT100 temperature offset ³⁾		Write
40045	int16	Measuring board temperature offset ³⁾	-	Write

 $^{^{3)}}$ Settable offset for the measured value, default = 0

40052	int16	Channel 1 current amplification ⁴⁾	 Write
40053	int16	Channel 2 current amplification ⁴⁾	 Write
40054	int16	Channel 3 current amplification ⁴⁾	 Write
40055	int16	Channel 4 current amplification ⁴⁾	 Write
40056	int16	Channel 5 current amplification ⁴⁾	 Write
40057	int16	Channel 6 current amplification ⁴⁾	 Write
40058	int16	Channel 7 current amplification ⁴⁾	 Write
40059	int16	Channel 8 current amplification ⁴⁾	 Write

Register	Format	Description	Unit	Access
40060	int16	Channel 9 current amplification ⁴⁾		Write
40061	int16	Channel 10 current amplification ⁴⁾		Write
40062	int16	Channel 11 current amplification ⁴⁾		Write
40063	int16	Channel 12 current amplification ⁴⁾		Write
40064	int16	Channel 13 current amplification ⁴⁾		Write
40065	int16	Channel 14 current amplification ⁴⁾		Write
40066	int16	Channel 15 current amplification ⁴⁾		Write
40067	int16	Channel 16 current amplification ⁴⁾		Write
40068	int16	Channel 17 current amplification ⁴⁾		Write
40069	int16	Channel 18 current amplification ⁴⁾		Write
40070	int16	Channel 19 current amplification ⁴⁾		Write
40071	int16	Channel 20 current amplification ⁴⁾		Write
40072	int16	Channel 21 current amplification ⁴⁾		Write
40073	int16	Channel 22 current amplification ⁴⁾		Write
40074	int16	Channel 23 current amplification ⁴⁾		Write
40075	int16	Channel 24 current amplification ⁴⁾		Write

⁴⁾ Settable amplification for the current measured value, default = 1000 (which means a deduction of 1)

40090	int16	Voltage amplification ⁵⁾		Write
40091	int16	Not used		Write
40092	int16	Analog input amplification (0 10 V) ⁵⁾		Write
40093	int16	Analog input amplification (0 20 mA) ⁵⁾		Write
40094	int16	PT100 temperature amplification ⁵⁾		Write
40095	int16	Measuring board temperature amplification ⁵⁾	-	Write

⁵⁾ Settable amplification for the current measured value, default = 1000 (which means a deduction of 1)

6.4 Connection procedure

- 1. Connect the ground wire.
- 2. Connect the power supply.
- 3. If required, connect up the interface connections (RS485/Modbus). Use a shielded, twisted cable for this. Connect the bus devices preferably in a chain (one after the other). The modules are provided with a duplicate internal connection interface for the chained circuit: use the first bus interface as an input and the second as output to the next bus device. For connections with a star topology or stubs, please use the 6 Port RS485 HUB S (meteocontrol item number 421.641).
- Set the bus address of the String Monitoring Unit using the DIP switches.
- 5. The bus lines should be terminated with 120 Ω resistors at the first and the last bus device.
- If necessary, connect the signal from the auxiliary contact of the DC circuit breaker and the signal from the auxiliary contact of the overvoltage protection devices to the digital inputs of the String Monitoring Unit.
- 7. If necessary, connect further sensor systems to the appropriate inputs of the String Monitoring Unit.
- 8. Connect the individual strings (1 to 8, 1 to 12, 1 to 16 or 1 to 24)
- 9. Connect the cable for measuring the system voltage to U+.
- The String Monitoring Unit is now fully connected and can be put into operation.

Technical data

7.1 Technical data – String Monitoring Unit 0825

Module

Dimensions (W x H x D): 197 x 108 x 52 mm

Type of installation DIN EN mounting rail

Weight: 465 g

Operating temperature: -20 ... +80 °C

Operating environment: Do not expose to corrosive gases

Supply

Supply voltage: 22...27 V DC

Power consumption: < 3 W

Conductor connection: 0.34 ... 2.5 mm², wire stripping length 7 ... 8 mm

Communication

Standard: RS485

Data format: 8N1 (factory setting), 8E1, 8O1

Can be set via Modbus

Protocols: Modbus RTU

Baud rate: 2,400 bps, 4,800 bps, 9,600 bps (factory setting),

19,200 bps

Bus address: Is set via DIP switches

Input current

Number: 8

Measuring range: 0...25 A DCPrecision: $\leq 0.5 \%$

Conductor connection: ≤ 6 mm², tightening torque: 1 Nm, (screw terminal) wire stripping length 6 ... 7 mm

Output current

Number:

Maximum total current: 200 A DC

Conductor connection: M6 threaded bolts, metric thread, for ring cable lug;

max. torque 2.5 Nm

Input voltage

Number: 1

Measuring range: 0...1,500 V DC Precision: < 1.5 %

Conductor connection: ≈0.5 ... 2 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 6 ... 7 mm

Input temperature

Number: 1

Type: PT100 with three-wire connection

Measuring range: 0 ... 300 °C Precision: < 1.5 %

Conductor connection: 0.34 ... 2.5 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 7 ... 8 mm

Digital input

Number: 4

Type: PNP digital inputs, 24 V DC

Maximum input current: 24 V DC

Conductor connection: 0.34 ... 2.5 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 7 ... 8 mm

Analog current input

Number:

Type: Current input
Measuring range: 0 ... 20 mA
Precision: < 1.5 %

Conductor connection: 0.34 ... 2.5 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 7 ... 8 mm

Analog voltage input

Number: 1

Type: Voltage input Measuring range: 0 ... 10 V

Conductor connection: ≈0.5 ... 2 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length 6 ... 7 mm

7.2 Technical data – String Monitoring Unit 1225

Module

Dimensions (W x H x D): 241 x 108 x 52 mm

Type of installation DIN EN mounting rail

Weight: 550 g

Operating temperature: -20 ... +80 °C

Operating environment: Do not expose to corrosive gases

Supply

Supply voltage: 22...27 V DC Power consumption: < 3 W

Conductor connection: 0.34 ... 2.5 mm², wire stripping length 7 ... 8 mm

Communication

Standard: RS485

Data format: 8N1 (factory setting), 8E1, 8O1

Can be set via Modbus

Protocols: Modbus RTU

Baud rate: 2,400 bps, 4,800 bps, 9,600 bps (factory setting),

19,200 bps

Bus address: Is set via DIP switches

Input current

Number: 12

Measuring range: 0...25 A DCPrecision: $\leq 0.5 \%$

Conductor connection: \leq 6 mm², tightening torque: 1 Nm, (screw terminal) wire stripping length 6 ... 7 mm

Output current

Number:

Maximum total current: 300 A DC

Conductor connection: M6 threaded bolts, metric thread, for ring cable lug;

max. torque 2.5 Nm

Input voltage

Number: 1

Measuring range: 0...1,500 V DC Precision: < 1.5 %

Conductor connection: ≈0.5 ... 2 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 6 ... 7 mm

Input temperature

Number: 1

Type: PT100 with three-wire connection

Measuring range: 0 ... 300 °C Precision: < 1.5 %

Conductor connection: 0.34 ... 2.5 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 7 ... 8 mm

Digital input

Number: 4

Type: PNP digital inputs, 24 V DC

Maximum input current: 24 V DC

Conductor connection: 0.34 ... 2.5 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 7 ... 8 mm

Analog current input

Number: 1

Type: Current input
Measuring range: 0 ... 20 mA
Precision: < 1.5 %

Conductor connection: 0.34 ... 2.5 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 7 ... 8 mm

Analog voltage input

Number: 1

Type: Voltage input Measuring range: 0 ... 10 V

Conductor connection: ≈0.5 ... 2 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 6 ... 7 mm

7.3 Technical data – String Monitoring Unit 1625

Module

Dimensions (W x H x D): 267 x 108 x 52 mm

Type of installation DIN EN mounting rail

Weight: 795 g

Operating temperature: -20 ... +80 °C

Operating environment: Do not expose to corrosive gases

Supply

Supply voltage: 22...27 V DC Power consumption: < 3 W

Conductor connection: 0.34 ... 2.5 mm², wire stripping length: 7 ... 8 mm

Communication

Standard: RS485

Data format: 8N1 (factory setting), 8E1, 8O1

Can be set via Modbus

Protocols: Modbus RTU

Baud rate: 2,400 bps, 4,800 bps, 9,600 bps (factory setting),

19,200 bps

Bus address: Is set via DIP switches

Input current

Number: 16

Measuring range: 0...25 A DCPrecision: $\leq 0.5 \%$

Conductor connection: \leq 6 mm², tightening torque: 1 Nm, (screw terminal) wire stripping length 6 ... 7 mm

Output current

Number:

Maximum total current: 400 A DC

Conductor connection: M6 threaded bolts, metric thread, for ring cable lug;

max. torque 2.5 Nm

Input voltage

Number: 1

Measuring range: 0...1,500 V DC Precision: < 1.5 %

Conductor connection: ≈0.5 ... 2 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 6 ... 7 mm

Input temperature

Number: 1

Type: PT100 with three-wire connection

Measuring range: 0 ... 300 °C Precision: < 1.5 %

Conductor connection: 0.34 ... 2.5 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 7 ... 8 mm

Digital input

Number: 4

Type: PNP digital inputs, 24 V DC

Maximum input current: 24 V DC

Conductor connection: 0.34 ... 2.5 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 7 ... 8 mm

Analog current input

Number:

Type: Current input
Measuring range: 0 ... 20 mA
Precision: < 1.5 %

Conductor connection: 0.34 ... 2.5 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 7 ... 8 mm

Analog voltage input

Number: 1

Type: Voltage input Measuring range: 0 ... 10 V

Conductor connection: ≈0.5 ... 2 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 6 ... 7 mm

7.4 Technical data – String Monitoring Unit 2422

Module

Dimensions (W x H x D): 326 x 108 x 52 mm

Type of installation DIN EN mounting rail

Weight: 880 g

Operating temperature: -20 ... +80 °C

Operating environment: Do not expose to corrosive gases

Supply

Supply voltage: 22...27 V DC Power consumption: < 3 W

Conductor connection: 0.34 ... 2.5 mm², wire stripping length: 7 ... 8 mm

Communication

Standard: RS485

Data format: 8N1 (factory setting), 8E1, 8O1

Can be set via Modbus

Protocols: Modbus RTU

Baud rate: 2,400 bps, 4,800 bps, 9,600 bps (factory setting),

19,200 bps

Bus address: Is set via DIP switches

Input current

Number: 24

Measuring range: 0...22 A DC
Precision: ≤ 0.5 %

Conductor connection: ≤ 6 mm², tightening torque: 1 Nm, (screw terminal) wire stripping length: 6 ... 7 mm

Output current

Number: 1

Maximum total current: 528 A DC

Conductor connection: M6 threaded bolts, metric thread, for ring cable lug;

max. torque 2.5 Nm

Input voltage

Number: 1

Measuring range: 0...1,500 V DC Precision: < 1.5 %

Conductor connection: ≈0.5 ... 2 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 6 ... 7 mm

Input temperature

Number: 1

Type: PT100 with three-wire connection

Measuring range: 0 ... 300 °C Precision: < 1.5 %

Conductor connection: 0.34 ... 2.5 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 7 ... 8 mm

Digital input

Number: 4

Type: PNP digital inputs, 24 V DC

Maximum input current: 24 V DC

Conductor connection: 0.34 ... 2.5 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 7 ... 8 mm

Analog current input

Number:

Type: Current input
Measuring range: 0 ... 20 mA
Precision: < 1.5 %

Conductor connection: 0.34 ... 2.5 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 7 ... 8 mm

Analog voltage input

Number: 1

Type: Voltage input Measuring range: 0 ... 10 V

Conductor connection: ≈0.5 ... 2 mm², tightening torque: 1 Nm,

(screw terminal) wire stripping length: 6 ... 7 mm

8. Environmental protection and disposal

Old devices which no longer work should be disposed of in accordance with national and local environmental and recycling regulations. Electronic components may not be disposed of along with household waste.

9. Appendix

9.1 EC Declaration of Conformity

EG - KONFORMITÄTSERKLÄRUNG EC DECLARATION OF CONFORMITY

Hersteller: Manufacturer:	meteocontrol GmbH
Anschrift: Address:	Spichererstrasse 48 D – 86157 Augsburg Germany
Produkt: Product:	421925 String Monitoring Unit 0825 (SMU 0825) 421926 String Monitoring Unit 1225 (SMU 1225) 421927 String Monitoring Unit 1625 (SMU 1625) 421928 String Monitoring Unit 2422 (SMU 2422)

Wir erklären, dass die genannten Produkte folgenden Dokumenten und Normen entsprechen: We declare that the products described above are in compliance with the following documents and norms:

CE Marking Directive 93/68 Low Voltage Directive 73/23

Electrical safety: EN 60204-1

EN 62109-1

Electromagnetic compatibility: Directive 2004/108/EC

Directive 89/336

Electromagnetic immission: EN 61000-6-2

EN 61326-1 EN 61326-2-5

Electromagnetic emission: EN 61000-6-4

Augsburg, December 21, 2017

Ort, Datum Place, date

Technischer Direktor

Technical Director

9.2 List of figures

Fig. 1: Device overview – front side of the String Monitoring Unit 0825	. 10
Fig. 2: Device overview – front side of the String Monitoring Unit 1225	. 11
Fig. 3: Device overview – front side of the String Monitoring Unit 1625	. 12
Fig. 4: Device overview – front side of the String Monitoring Unit 2422	. 13
Fig. 5: Typical circuitry for a String Monitoring Unit	. 16
Fig. 6: Connecting a PT100 temperature sensor	. 17
Fig. 7: Daisy-chain cabling	. 21

Spicherer Straße 48 • D-86157 Augsburg • Phone +49 (0) 821 3 46 66-88 • Fax +49 (0) 821 3 46 66-11 technics@meteocontrol.com • www.meteocontrol.com

Text and illustrations represent state-of-the-art technology at the time of printing • Subject to technical modifications • We assume no liability for printing errors.